

Available online at www.sciencedirect.com

Tetrahedron Letters 47 (2006) 3361–3363

Tetrahedron Letters

Application of the intramolecular aza-Wittig reaction to the synthesis of pyrido[2,3-d]pyrimidines

Johann Chan* and Margaret Faul

Chemistry Process Research and Development, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, USA

Received 9 March 2006; accepted 14 March 2006

Abstract—Pyrido[2,3-d]pyrimidines are synthesized in a two-step procedure from amides and tetrazolo[1,5-a]pyridine-8-carbonyl chloride. Reaction of the crude imides with triphenylphosphine effects an intramolecular aza-Wittig reaction to afford a variety of substituted pyrido[2,3-d]pyrimidines in good to moderate yields (30–76%). $© 2006 Elsevier Ltd. All rights reserved.$

The beginnings of the aza-Wittig reaction are rooted in the work of Staudinger who synthesized the first iminophosphorane by reaction of tertiary phosphines and organic azides in the early $1900s$ $1900s$.¹ The reaction of iminophosphoranes with carbonyl compounds, particularly in an intramolecular sense, provides an effective approach to $C=N$ bond formation. Consequently, the use of iminophosphoranes as a synthetic intermediate toward a variety of nitrogen containing heterocycles has become commonplace.^{[2](#page-2-0)}

In the course of our investigations in the area of autoimmune diseases, 3 we required an alternative route to synthesize compounds that contained a pyrido[2,3-d]pyrimidine core. Eguchi had previously reported that iminophosphoranes derived from 2-aminonicotinicamides react with a variety of acid chlorides to furnish pyrido[2,3-d]pyrimidines in excellent yields.^{[4](#page-2-0)} The reaction was believed to proceed through an intermolecular aza-Wittig reaction followed by cyclization of the resultant imidoyl chloride 1 (Scheme 1). However, this method requires 200 mol % acyl chloride, and is limited to situations where the acyl chloride is stable or simple to prepare. Furthermore, this method is not applicable to substrates in which R^1 and R^2 are tethered. An alternative method that could overcome these drawbacks would be to perform the coupling between pyridine acyl chloride 2 and various amides, thus allowing access to

Scheme 1. Synthesis of pyrido[2,3-d]pyrimidines.

cyclic pyridopyrimidines.^{[5](#page-2-0)} To this end, we were pleased to find that the intramolecular aza-Wittig reaction indeed furnished the desired compounds in good to moderate yields. Herein, we report the participation of tetrazolo $[1,5-a]$ pyridine-8-carbonyl chloride (4) in the synthesis of pyrido $[2,3-d]$ pyrimidines by way of an intramolecular aza-Wittig reaction.

The synthesis of tetrazolo^[1,5-a]pyridine-8-carbonyl chloride (4) is summarized in [Scheme 2](#page-1-0). Beginning with

Keywords: Tetrazolo[1,5-a]pyridine-8-carbonyl chloride; aza-Wittig; Pyrido[2,3-d]pyrimidines; Iminophosphoranes.

^{*} Corresponding author. Tel.: +1 805 313 5264; fax: +1 805 375 4532; e-mail: johannc@amgen.com

^{0040-4039/\$ -} see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.03.091

Scheme 2. Synthesis of tetrazolo^{[1,5-a]pyridine-8-carbonyl chloride.}

2-chloronicotinic acid, treatment with sodium azide afforded tetrazole 3 in 65% yield. Notably, the equilibrium in water between tetrazole 3 and its isomeric 2 azidopyridine lies exclusively at the tetrazole, consistent with the earlier characterization data reported for this compound.[6](#page-2-0) Reaction of 3 with oxalyl chloride afforded tetrazolo[1,5-a]pyridine-8-carbonyl chloride (4) in 95% isolated yield as a fine powder that is stable when stored at -20 °C under argon (Scheme 2).^{[7](#page-2-0)}

In a two-step process, amides were coupled with tetra $zolo[1,5-a]$ pyridine-8-carbonyl chloride (4) and cyclized

to generate pyrido $[2,3-d]$ pyrimidines in good to moderate yields $(Table 1)$.^{[8](#page-2-0)} N-acylation of the amide was achieved through the use of $Et_3N/DMAP$ which afforded the desired imides [\(Scheme 3\)](#page-2-0). Interestingly, the treatment of amides with NaH/THF or NaH/DMF followed by the addition of tetrazolo^{[1,5-a]pyridine-8-car-} bonyl chloride (4) gave a mixture of N - and O -coupled products. The crude imide was used directly in the cyclization to generate the desired products (Table 1). Entries 1, 2, and 3 illustrate the potential of this method to synthesize cyclic pyridopyrimidines, a class of compounds that are particularly challenging to access using existing technologies.[9](#page-2-0) Electron-rich aromatic groups were well tolerated at R^1 ; however, coupling of amides possessing electron-deficient aromatic groups at $R¹$ (p-iodophenyl, p-cyanophenyl) suffered from poor conversion primarily due to imide hydrolysis.[10](#page-2-0) Alkyl groups larger than methyl suffered from poor conversion. With respect to \mathbb{R}^2 , aromatic, aliphatic groups and hydrogen were suitable substrates (entries 4, 5, and 6).

Table 1. Two-step approach to the synthesis of pyrido[2,3-d]pyrimidines

^a Difficulty purifying from P(O)Ph₃ in hexanes:ethyl acetate chromatography. b Reaction conducted in THF at 60 °C.

Scheme 3. Proposed mechanism to pyrido^[2,3-d]pyrimidine formation.

Although no mechanistic studies have been conducted, one reasonable proposal for this sequence begins with the standard coupling to form imide 5a/5b. Treatment of 5a/5b with triphenylphosphine could trap-out the desired iminophosphorane 6 from the equilibrium mixture.¹¹ Cyclization of iminophosphorane 6 would then lead to the desired product.

In summary, a new approach to the synthesis of pyridopyrimidines has been developed. Utilizing tetrazolo $[1,5-a]$ pyridine-8-carbonyl chloride (4), imides were conveniently synthesized and transformed via an aza-Wittig reaction to furnish pyrido[2,3-d]pyrimidines in good to moderate yields. This two-step procedure offers an attractive alternative to conventional methods, and is particularly useful for the generation of cyclic pyridopyrimidines.

Acknowledgements

We would like to thank Randy Jensen for NMR assistance.

References and notes

- 1. Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 2, 635.
- 2. (a) Eguchi, S.; Matsushita, Y.; Yamashita, K. Org. Prep. Proced. Int. 1992, 24, 209; (b) Wamhoff, H.; Richardt, G.; Stölben, S. Adv. Heterocycl. Chem. 1995, 64, 159; (c) Fresneda, P. M.; Molina, P. Synlett 2004, 1, 1.
- 3. Collins, T. L.; Johnson, M. G.; Ma, J.; Medina, J.C.; Miao, S.; Schneider, M.; Tonn, G. CXCR3 Antagonists. International Patent 075863, September 10, 2004.
- 4. Okawa, T.; Toda, M.; Eguchi, S.; Kakehi, A. Synthesis 1998, 1467.
- 5. An analogous approach to the quinazolinones have been undertaken see: (a) Takeuchi, H.; Eguchi, S. Tetrahedron Lett. 1989, 30, 3313; (b) Takeuchi, H.; Hagiwara, S.; Eguchi, S. Tetrahedron 1989, 20, 6375; (c) Luheshi, A. B.; Salem, S. M.; Smalley, R. K. Tetrahedron Lett. 1990, 31, 6561; (d) Eguchi, S.; Takeuchi, H.; Matsushita, Y. Heterocycles 1992, 33, 153.
- 6. (a) Pollak, A.; Polane, S.; Stanovnik, B.; Tisler, M. Monatsh. Chem. 1972, 103, 1591; (b) Cmoch, P.; Stefaniak, L.; Webb, G. A. Magn. Reson. Chem. 1997, 35, 237.
- 7. Representative procedure: To a solution of 2-chloronicotinic acid $(40.0 \text{ g}, 254 \text{ mmol})$ in DMSO (150 mL) was added sodium azide (16.5 g, 254 mmol) and the resulting mixture heated to 90 \degree C for 3 h. The precipitated product was poured into 500 mL of acetone and filtered. The white filter cake was washed with an additional 1.5 L of acetone, and dried in a vacuum oven (room temperature) to obtain 3 (27.3 g, 65%) as a white solid. Synthesis of acyl chloride: To a slurry of the acid 3 (17.8 g, 108 mmol) in dichloromethane (150 mL) was added DMF (0.1 mL) followed by oxalyl chloride (18.9 mL, 217 mmol) slowly. The reaction mixture was stirred for 3 h, concentrated in vacuo, and washed $2 \times$ with hexane (50–75 mL). The slurry was concentrated in vacuo to afford $4(19.6 g, 98%)$ as a fine gray powder. *Compounds 3 and 4 have not been tested for their propensity as explosives.
- 8. Synthesis of pyridopyrimidine representative procedure (entry 3): To a solution of azepan-2-one (226 mg, 2 mmol) in dichloromethane (5 mL) was added triethylamine (0.84 mL, 6 mmol), tetrazolo[1,5-a]pyridine-8-carbonyl chloride (4) $(746 \text{ mg}, 4 \text{ mmol})$, and DMAP $(45 \text{ mg},$ 0.2 mmol) and stirred for 16 h. The reaction mixture was diluted with dichloromethane (125 mL) and washed with 1 M HCl (75 mL) and $2 \times$ water (75 mL). The organic layer was dried (MgSO₄), filtered and concentrated in vacuo to afford crude imide. The crude imide was transferred to a 15 mL sealed tube and taken up in toluene (5 mL). Triphenylphosphine (640 mg, 1.2 mmol) was added and the reaction mixture heated to $110\degree C$ for 16 h. The solution was concentrated in vacuo and purified by silica gel chromatography (4:1 ethylacetate:hexanes $\rightarrow 100\%$ ethyl acetate) to afford the desired pyridopyrimidine (330 mg, 76%).
- 9. Dunn, A. D.; Kinnear, K. I.; Norrie, R. Z. Chem. 1986, 26, 290.
- 10. The conclusion of imide hydrolysis as opposed to poor reactivity was made based on the isolation of amide formed with tetrazolo[1,5-a]pyridine-8-carbonyl chloride (4) (crossproduct). In the case of poor reactivity, the cross-product would not be observed.

11. Lowe-Ma, C. K.; Nissan, R. A.; Wilson, W. S. J. Org. Chem. 1990, 55, 3755.